If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2u^2+6u+16=0
a = -2; b = 6; c = +16;
Δ = b2-4ac
Δ = 62-4·(-2)·16
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{41}}{2*-2}=\frac{-6-2\sqrt{41}}{-4} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{41}}{2*-2}=\frac{-6+2\sqrt{41}}{-4} $
| 16x+13=7x-16 | | 7x-16=16x+13 | | 13=3z+7 | | -1(x-6)-5=8(x+7) | | 4v+v=40 | | -4+9x=5x | | 3(3y+1)=-26 | | x+24+2x+34=2 | | m–7=12 | | (2/3)*x=16 | | 2X+1=-3+3x | | 5(x+4)+4=-11 | | -1=5+x/3. | | 2x+34+x+24=2 | | 2x=1=-3+3x | | 5(x+4)+4=5x+24 | | 4x=-20,8 | | 1^x=1.5 | | 12x-(6x+5)=10x | | 29=4+5y | | -(9x-4)-(4x-5)+8=-12(x-1)-(6x+13)+3 | | (4x-5)=105 | | 2x-17+2x-11=16 | | -3x-5=-2x+1 | | 10x+40=200 | | 5x-3+2=12 | | 1/2x+7=5x-13/4 | | 1x+2x+(x+5)+135=360 | | (6x+4)=104 | | 1.7x-0.43=0.6x-0.76 | | -(12x-5)-(2x-6)+4=-10(x-1)-(8x+10) | | (3x+8)=61 |